Closing Fri: 2.1, 2.2, 2.3

Closing next Tue: 2.5-6

Closing next Fri: 2.7, 2.7-8

Today: Finish 2.3, start 2.5.

Entry Task: Find the limits

$$1.\lim_{x\to 0}\frac{x^2+6x+5}{x+1} =$$

$$2. \lim_{x \to -1} \frac{x^2 + 6x + 5}{x + 1} =$$

$$3. \lim_{x \to 0^+} \frac{e^x - \sin\left(x + \frac{\pi}{2}\right) + 3}{x(x - 4)} =$$

$$4.\lim_{x\to 2} \frac{\frac{1}{x+1} - \frac{1}{3}}{x-2} =$$

$$5.\lim_{h\to 0}\frac{(6+h)^2-36}{h}=$$

$$6. \lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2} =$$

Squeeze Thm:

If the following hold:

(1)
$$g(x) \le f(x) \le h(x)$$
 near $x = a$

(2)
$$\lim_{x \to a} g(x) = L$$
 and $\lim_{x \to a} h(x) = L$

then

$$\lim_{x \to a} f(x) = L$$

Example: Find

$$\lim_{x \to 0} x^2 \cos\left(\frac{10}{x}\right) =$$

Multipart functions (again):

Example: Find the limits

$$f(x) = \begin{cases} \frac{12x}{x+5} & \text{, if } x \le 1; \\ \frac{x}{x-2} & \text{, if } 1 < x \le 3 \\ \frac{x^2+4x-21}{x-3} & \text{, if } x > 3. \end{cases}$$

- 1. $\lim_{x \to 1^{-}} f(x)$
- $2.\lim_{x\to 1^+} f(x)$
- $3.\lim_{x\to 2^-}f(x)$
- $4.\lim_{x\to 2^+} f(x)$
- $5.\lim_{x\to 3^-} f(x)$

Here is a picture of f(x)

2.5 Continuity

A function, f(x), is **continuous at x = a** if

$$\lim_{x \to a} f(x) = f(a)$$

this implies three things

- (1). f(a) is defined,
- (2). $\lim_{x\to a} f(x)$ exists and is finite, and
- (3). (1) and (2) are the same!

Continuous from the left

$$\lim_{x \to a^{-}} f(x) = f(a)$$

Continuous from the right

$$\lim_{x \to a^+} f(x) = f(a)$$

Casually, we might say a function is continuous at x = a if you can draw the graph across x = a point without picking up your pencil.

The "standard" precalculus functions are continuous everywhere they are defined:

```
polynomials \rightarrow defined everywhere sin(x), cos(x) \rightarrow defined everywhere e^x \rightarrow defined everywhere odd roots \rightarrow defined everywhere tan^{-1}(x) \rightarrow defined everywhere
```

Rational Functions \rightarrow for denom $\neq 0$

Even Roots → under radical ≥ 0

 $\ln(x)$ \rightarrow for x > 0

tan(x) \rightarrow not at $x = \pm k\pi/2$

 $\sin^{-1}(x)$, $\cos^{-1}(x)$ \rightarrow for $-1 \le x \le 1$

Example:

$$g(x) = \begin{cases} 8 - x^2 & , \text{if } x < 0; \\ 2 & , \text{if } 0 \le x < 5; \\ 0 & , \text{if } x = 5; \\ 7 - x & , \text{if } x > 5. \end{cases}$$

Does g(x) have any discontinuities? If so, where?

Example:

$$h(x) = \begin{cases} ax^2 + 6 & \text{, if } x < 1; \\ b & \text{, if } x = 1; \\ \frac{x + 49}{x + a} & \text{, if } x > 1. \end{cases}$$

Find the values of a and b that will make h(x) continuous everywhere.

Theorem:

If f(x) is continuous at x = b, and

$$\lim_{x \to a} g(x) = b$$

then

$$\lim_{x \to a} f(g(x)) = f(b).$$

Example:

Find

$$\lim_{x\to 9} \ln\left(\frac{\sqrt{x}-3}{x-9}\right)$$